Moment-sum-of-squares hierarchies for set approximation and optimal control

نویسنده

  • Milan KORDA
چکیده

This thesis uses the idea of lifting (or embedding) a nonlinear controlled dynamical system into an infinite-dimensional space of measures where this system is equivalently described by a linear equation. This equation and problems involving it are subsequently approximated using well-known moment-sum-of-squares hierarchies. First, we address the problems of region of attraction, reachable set and maximum controlled invariant set computation, where we provide a characterization of these sets in terms of an infinite-dimensional linear program in the cone of nonnegative measures and we describe a hierarchy of finite-dimensional semidefiniteprogramming (SDP) hierarchies providing a converging sequence of outer approximations to these sets. Next, we treat the problem of optimal feedback controller design under state and input constraints. We provide a hierarchy of SDPs yielding an asymptotically optimal sequence of rational feedback controllers. In addition, we describe hierarchies of SDPs yielding approximations to the value function attained by any given rational controller, from below and from above, as well as a hierarchy of SDPs providing approximations from below to the optimal value function, hence obtaining performance certificates for the designed controllers as well as for any given rational controller. Finally, we describe a method to verify properties of a closed loop interconnection of a nonlinear dynamical system and an optimization-based controller (e.g., a model predictive controller) for deterministic and stochastic nonlinear dynamical systems. Properties such as global stability, the 2 gain or performance with respect to a given infinite-horizon cost function can be certified. The methods presented are easy to implement using freely available software packages and are documented by a number of numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the L1 norm to the value function as their degree d tends to infinity. We sho...

متن کامل

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set K. The idea consists of approximating from above the indicator function of K with a sequence of polynomials of increasing degree d, so that the integrals of these polynomials generate a convergence sequence of upper bounds on the volume of K. We show that t...

متن کامل

Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of HamiltonJacobi-Bellman inequalities is also characterized. The LPs are then solved numer...

متن کامل

Modal occupation measures and LMI relaxations for nonlinear switched systems

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of HamiltonJacobi-Bellman inequalities is also characterized. The LPs are then solved numer...

متن کامل

Approximate Optimal Designs for Multivariate Polynomial Regression

Abstract: We introduce a new approach aiming at computing approximate optimal designs for multivariate polynomial regressions on compact (semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy of semidefinite programming problems to solve numerically the approximate optimal design problem. The geometry of the design is recovered via semidefinite programming duality theory. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016